home *** CD-ROM | disk | FTP | other *** search
- #N Irrational 5
- #O Dean Hickerson, drhickerson@ucdavis.edu 5/12/91
- #C Population growth is linear with an irrational
- #C multiplier. Each middleweight spaceship produced by
- #C the puffers either hits a boat or is deleted by a
- #C glider. Denoting the first possibility by 1 and the
- #C second by 0, we obtain a sequence beginning
- #C 101011011010... If we prepend 101, we obtain the
- #C Fibonacci string sequence, defined by starting with 1
- #C and then repeatedly replacing each 0 by 1 and each
- #C 1 by 10: 1 -> 10 -> 101 -> 10110 -> 10110101 -> ...
- #C (See Knuth's "The art of computer programming,
- #C vol. 1", exercise 1.2.8.36 for another definition.)
- #C The density of 1's in this sequence is (sqrt(5)-1)/2,
- #C which implies that the population in gen t is
- #C asymptotic to (8 - 31 sqrt(5)/10) t. More
- #C specifically, the population in gen
- #C 20 F[n] - 92 (n>=6) is 98 F[n] - 124 F[n-1] + 560,
- #C where F[n] is the n'th Fibonacci number. (F[0]=0,
- #C F[1]=1, and F[n] = F[n-1] + F[n-2] for n>=2.)
- #P -67 -32
- ..**
- .***
- **.*
- .**
- #P -63 -31
- *
- *
- #P -58 -31
- ****
- *...*
- *
- .*..*
- .
- .....**
- #P -61 -25
- ........**
- *.....*...*
- *....*...*
- .*..*....*
- **...*.*
- #P 52 -29
- ...*
- ....*
- *...*
- #P 53 -26
- ****
- #P -65 -25
- ..**
- .*
- **
- #P -64 -22
- **
- .**
- #P 69 -26
- .**
- *
- #P 72 -26
- **
- .*
- .*
- *
- #P 46 -23
- ..*
- *.*
- #P 47 -21
- **
- #P 60 -19
- ..*
- .*
- **
- .**
- #P 64 -20
- **
- .
- *
- #P 69 -20
- **
- *.*
- ..*
- #P 69 -17
- ***
- #P -67 -18
- ..**
- .***
- **.*
- .**
- #P -63 -17
- *
- *
- #P 41 -18
- ..*
- *.*
- .**
- #P 41 -15
- .
- .
- .
- #P -49 -16
- ..**
- .***
- **.*
- .**
- #P -45 -15
- *
- *
- #P -5 -16
- ...*
- .
- *
- .***
- #P -1 -15
- *
- *
- *
- #P 13 -13
- .****
- *...*
- ....*
- ...*
- #P 13 -7
- .*
- ..*
- ..*
- .**
- *
- #P 36 -13
- ..*
- *.*
- #P 37 -11
- **
- #P -26 -10
- *
- .***
- #P -22 -12
- *
- .*
- .*
- **
- #P 61 -12
- ..*
- **
- ***
- .**
- #P 64 -12
- *
- **
- *
- #P 69 -12
- .**
- *
- #P 72 -12
- **
- .*
- .*
- *
- #P -40 -10
- .**
- **
- .**
- ..*
- #P -37 -9
- **
- **
- *
- #P -58 -8
- .**
- **
- .**
- ..*
- #P -55 -7
- **
- **
- *
- #P 31 -8
- ..*
- *.*
- .**
- #P 31 -5
- .
- .
- .
- #P 46 -8
- ..**
- **.**
- ****
- .**
- .
- .
- .....*
- .....*
- .....*
- #P 52 -8
- ...****
- ..*...*
- ......*
- ..*..*
- .
- **
- ****
- ....*
- **..*
- *..**
- .**
- #P -17 -3
- .**
- **.**
- .****
- ..**
- #P -15 3
- ..*
- .**
- **
- .**
- #P -8 -4
- .*
- *
- *
- ***
- #P -5 -2
- .*
- *
- #P 26 -3
- ..*
- *.*
- #P 27 -1
- **
- #P -64 -2
- ..........*
- .........**
- ........**
- .........*
- ..........*
- .
- .
- .
- .......**
- ......**.**
- .......****
- .*......**
- *
- *...*
- ****
- #P -53 -2
- **
- ...*
- .*.*
- ....*
- *..*
- ...*
- .*
- .....*
- ....*
- ....*...*
- ....****
- #P -27 1
- **
- #P -28 2
- **
- ..*
- #P 5 1
- ..**
- **.**
- #P 5 3
- ****
- .**
- #P 13 1
- .****
- *...*
- #P 16 3
- .*
- *
- #P -33 6
- .**
- **
- #P -31 8
- *
- #P 54 6
- .*
- *
- #P 56 6
- ***
- ..*
- ..*
- .*
- #P 22 9
- .**
- **
- .**
- ..*
- #P 25 10
- ***
- ***
- **
- #P 36 8
- .*
- *
- #P 38 8
- ***
- ..*
- ..*
- .*
- #P -73 10
- .**
- **.*
- .***
- ..**
- #P -69 11
- *
- *
- #P -37 11
- **
- #P -38 12
- **
- ..*
- #P -17 11
- .**
- **.**
- #P -16 13
- ****
- .**
- #P 1 12
- ..*
- .**
- **
- .**
- #P 4 12
- *
- **
- **
- #P 45 14
- *
- .**
- #P 48 12
- *
- .*
- .*
- **
- #P 63 16
- *
- .**
- #P 66 14
- *
- .*
- .*
- **
- #P -71 16
- ..*
- .**
- **.*
- #P -70 19
- *.*
- .**
- #P -64 16
- ...*
- .
- ...*
- ***
- #P -60 16
- **
- .*
- **
- #P -43 16
- .**
- **
- #P -41 18
- *
- #P -47 21
- **
- #P -48 22
- **
- ..*
- #P 52 21
- .....*
- ..****
- .*****
- *
- .**
- ..*
- .
- ....**
- ...****
- ...**.**
- .....**
- #P 61 21
- .**
- **.**
- .*..*
- .*..*
- ..**
- .
- .
- .....*
- ......*
- ..*...*
- ...****
- #P -73 24
- .**
- **.*
- .***
- ..**
- #P -69 25
- *
- *
- #P -55 25
- .**
- ****
- #P -56 27
- **.**
- .**
-